

Design of Carbon-based Oxygen Reduction Electrode for Fuel Cell

Seong Ihl Woo

Chang Hyuck Choi, Min Wook Chung, Sung Hyeon Park Jae Kang Koh, Young Jin Jeon

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology Daejeon, 305-701 (Republic of Korea) siwoo@kaist.ac.kr

Danish Korean PEMFC Workshop 2013

November 18, 2013, Seoul, Korea

Contents

- 1. Introduction
- 2. Binary and Ternary doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Reaction
- 3. Nitrogen-doped Graphene/Carbon Nanotube Self-Assembly for Efficient Oxygen Reduction Reaction in Acid Media
- 4. Enhanced Electrochemical Oxygen Reduction Reaction by Restacking of N-doped Single Graphene Layers
- 5. Conclusion

Thermodynamics in PEMFCs

Anode : $H_2 \rightarrow 2H^+ + 2e^-$ Cathode : $1/2O_2 + 2H^+ + 2e^- \rightarrow H_2O$

 $Total: H_2 + 1/2O_2 \rightarrow H_2O \qquad (1.23 \text{ V})$

(0 V) Hydrogen oxidation reaction (HOR)(1.23 V) Oxygen reduction reaction (ORR)

Reversible cell potential = 1.23 V

Problems Gas Catalyst PEM Catalyst Gas diffusion electrode membrane electrode diffusion backing backing layer lave Oxygen gas from Hydrogen gas from air in serpintine flow serpintine flow field field finds a pathway finds a pathway to Pathway o to catalyst layer hydrogen ior catalyst layer conduction Pathway of water from catalyst layer Carbon nanoparticles ays of electron Platin catalyst Platinum catalysts

<u>\$1,200,000</u>

Various Alternatives

- 1. Lean-Pt catalysts *e.g. Pt-M alloys*
- 2. Noble metal catalysts *e.g. Pd, Ir, or Ru*
- 3. Transition metal catalysts *e.g. TiN, CoSe, WC*
- 4. Non-metal catalysts *e.g. Carbon based catalysts*

[Purpose of the research]

1. Find carbon based catalyst having *high ORR activity* with *cheap price*.

Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity

ACS Nano 6 (2012) 7084-7091

Purpose of the study

A new strategy for enhancing ORR activity

Additional doping of heteroatoms

		12	2	13		14		15		16	17	18		
e	ta	als										2 He Helium 4.002602	2	к
	addon			5 B Boron 10.811	3	6 4 C Carbon 12.0107	2	7 N Nitrogen 14.0087	240	8 6 O Crygen 15.9994	9 7 F Fluorine 18.9984032	10 Ne Neon 20.1797	8	ĸ
	ISES			13 Al Aluminium 28.9815388	2 8 5	14 ² Si Silicon 28.0855	2	15 P Phosphorus 30.973782	205	16 8 S Sultur 32.065	17 Cl Chlorine 35.453	18 Ar Argon 39.948	2 8 8	K L M
1	2 8 8	30 Zn ^{Znc} 65.38	2 8 18 2	31 Ga Galium 69.723	2 10 3	32 Ge Germanium 72.84	2 8 8	33 As Arsenic 74.92160	20105	34 2 Se 3 Selenium 78.98	35 ² Br Bromine 79.904	36 Kr Kypton 83.798	2 10 0	K L M N
1	2 8 8 1 8	48 Cd Cedmium 112.411	2 8 18 18 2	49 In Indum 114.818	20 10 10 0	50 50 Sn 5 Th 118.710	2 8 8 8	51 Sb Antimony 121.760	2010105	52 58 Te 16 Telurium 127.80	53 ² 53 ¹⁰ 10 10 10 10 10 10 10 10 10 10	54 Xe Xenon 131.293	2 10 10 0	KL MNO
101	2 8 8 12 18 1	80 Hg Mercury 200.59	2 6 18 10 18 2	81 TI Thellum 204.3833	2 10 32 10 32	82 8 Pb 32 Lead 4 207.2	2 8 7 8	83 Bi Bismuth 208.98040	2010 210 5	84 28 Po 32 Polonium (206.9824)	85 At Astatine (209.9871)	86 Rn (222.0176)	2 10 10 10 10 0	KLM NOP
1001	2 8 10 12 10 1	112 Uuto Ununblur (285)	2 6 15 32 15 15 15 15 15 15 15 15 15 15 15 15 15	113 Ununthum (284)	2 10 32 10 32 10 32	114 Uuq ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	2 8 2 2 8 4	115 Uup (288)	2 8 10 2 10 10 10	116 Uuh Ununhezium 18 (292)	117 Uus Uuneptum	118 Uuo Uhunoctium (294)	0 000 000 000 000 000 000 000 000 000	K LMN OP O

 $\mathbf{\nabla}$

Acid treatment with aqua regia

Final catalysts

- 1. NDC: N-doped carbon
- 2. Dual doped carbon
 - 1. B,N-doped carbon
 - 2. P,N-doped carbon
- 3. Ternary doped carbon
 - 1. B,P,N-doped carbon

Preparation of catalysts

1. Homogeneous powder

Carbonization

2.

ORR activities of the prepared catalysts

- 3.
- ORR activity : BPNDC > PNDC > BNDC > NDC

Calculated mass activities at 0.6V (vs RHE) for the prepared Catalysts and N-doped catalysts reported by other research group : N-doped carbon prepared by traditional methods (a to d, pyrolysis of C-N containing precursor) and by modified methods (e to g, secondary pyrolysis or use of sacrificial supports).

-2.6

-3.0

-5.4

Mass activity

(mA/mg_{catal})

-6.0

XRD results of the prepared catalysts

(a) NDC(b) BNDC(c) PNDC(d) BPNDC

- 1. Graphite is synthesized.
- Some metal residues (e.g. Co, Fe, or their alloy) are still remained after acid treatment → ∵graphite-encapsulation of metals prevent penetration of proton.
- B-doping : Crystallinity of graphite ↑ (∵ sp² bonding, similar atomic size)
- P-doping : Crystallinity of graphite ↓ (∵ sp³ bonding, bigger atomic size)
- 5. Presence of P-source results in metal phosphide

Disorder of carbon structure confirmed by Raman

Catalysts	NDC	BNDC	PNDC	BPNDC
D-band ^a	1355.2	1353.7	1358.4	1358.4
G-band ^a	1578.5	1576.9	1586.3	1584.7
I_D/I_G^{b}	0.67	0.60	0.83	0.68

^a cm⁻¹

^b Intensity ratio of D- to G-band

1. Graphite structure : D- and G-band is arisen at around 1355 cm⁻¹ and 1580 cm⁻¹, respectively.

2. I_D/I_G : BNDC < NDC < BPNDC < PNDC

- B-doping : Graphite structure ↑
 (∵ sp² bonding, similar atomic size)
- P-doping : Disorder ↑
 sp³ bonding, bigger atomic size)

KAIS1

(::

Effects of **B-doping** as a function of ORR activity

1. order of graphite structure \uparrow

Niwa et al. reported that ORR activity of N-doped carbon was improved with increasing sp^2 -carbon network.¹

Our previous study also reported that degree of sp^2 -carbon network is one of the major factors, determining ORR activity of N-doped carbon.²

Improvement of ORR activity as increasing sp²-carbon network, is due to increment of electron conductivity.³

¹ Niwa et al./ JPS 196 (2011) 1006
² Choi et al./ Appl. Catal. B: Environment, under review
³Podyacheva et al./ Carbon 47 (2009) 1922

2. Amount of Pyridinic-N ↑

Order of activity according to the doping type of nitrogen :

Pyridinic > Graphitic > ... > Pyridinic oxide

Dopant	l	N-doping (%)
type	N_1	N_2	N_3
NDC	44.1	45.1	10.8
BNDC	60.2	33.0	6.8
PNDC	53.6	38.7	7.7
BPNDC	63.8	31.5	4.7

XPS spectra of carbon (C_{1s}) in the catalysts

- Binding energy of C-C bonding is upshifted for NDC, BNDC : 0.15 eV PNDC, BPNDC : 0.23 eV
- 2. Up-shift of C-C binding energy is due to high electro-negativity of N atom.
- 3. In the case of incorporation of P atom, more electron delocalization from carbon atom are occurred rather than the case of N-doping, only.

TEM images of the prepared catalysts

(a) NDC (b) BNDC (c) PNDC (d) BPNDC

- 1. NDC and BNDC : Horn-like shape consisted of several carbon layers stacked up
- 2. **PNDC** and **BPNDC** : Bamboo-like CNTs consisted of many open edge sites

Effects of *P-doping* as a function of ORR activity

1. Enhanced charge delocalization

Gong et al. argued that ORR activity of N-doped carbon was arisen from adjacent carbon atoms, electrondelocalized by dopants.¹

¹ Gong et al./ Science 323 (2009) 760 ² Kim et al./ PCCP 13 (2011) 17505 2. Production of edge sites

Many theoretical and experimental studies supports that edge sites doped by nitrogen have the highest ORR activity compared to other carbon sites.²

Nitrogen-doped Graphene/Carbon Nanotube Self-Assembly for Efficient Oxygen Reduction Reaction in Acid Media

Appl. Catal. B: Environmental 144 (2013) 760-766

Experimental Strategy

✓ Poor conductivity

✓ Small surface area

Additional N-doping for high ORR activity

SEM, TEM, and XRD results of the prepared catalysts

- ✓ Graphene and CNT were successfully self-assembled
- \checkmark CNT play a role as a spacer & an inhibitor in the restacking of graphene

nemu

XPS results of the prepared catalysts

Intensity

N1 : Pyridinic-N N2 : Pyrrolic- or graphitic-N N3 : Pyridinic-oxide

at.%		NCNT	NGr	NGCA	
C		91.1	93.4	90.0	
0		7.4	4.7	6.9	
N		1.5	1.9	3.1	
	N1	60.1	65.5	55.2	
N-proportion(%)	N2	35.0	29.0	34.9	
	N3	4.9	5.5	10.0	

✓ Similar proportion of N-phases✓ Pyridinic-N is the dominat site

ORR performance of the prepared catalysts

(a) LSV curves in O_2 -bubbled 1M HClO₄ solutions with 2000rpm of electrode rpm (b) Tafel-plots based on unit mass of the carbons (c) mass activities (mA/mg) calculated at 0.75 V (*vs.* RHE) (d) current-time chronoamperometric responses obtained at 0.6 V (*vs.* RHE) for 10h

- ✓ ~0.91 V (vs. RHE) of onset potential
- ✓ Six-fold higher mass activity than NGr (2.13mA/mg)
- ✓ Superior stability compared with Pt/C

Resistance of the prepared catalysts

Graphene-CNT self-assembly

- ✓ Efficient transport of the reactant molecules due to the space between graphene layers
- ✓ Efficient transport of the electrons through the CNTs

Enhanced Electrochemical Oxygen Reduction Reaction by Restacking of Ndoped Single Graphene Layers

RSC Advances 3 (2013) 4246-4253

Preparation of the catalysts

XRD results

(a) **XRD patterns** of the prepared catalysts and (b) **magnified XRD results** for modifies NGrs from 20° to 30° of 2-theta range.

- ✓ Broaden XRD patterns → successful reduction of GO
- ✓ Crystallinity : NGr-H_{DM}LH_{DM} > NGr-H_{DM} > NGr-H_M > NGr-H

TEM and SEM results

Raman Spectroscopy

✓ High I_D/I_G ratio

✓ 2D-band position : between single layer graphene and graphite
 → restacking of graphene layer

Performance of the prepared catalysts (1) - Cyclic Voltammetry (CV)

✓ High reduction peak potential \Rightarrow good ORR performance

 \checkmark NGr-H_{DM}LH_{DM} > NGr-H_{DM} > NGr-H_M > NGr

Performance of the prepared catalysts (2) - Tafel plot & Mass activity

(a) Tafel plot of the prepared catalysts obtained from ORR results $1M \text{ HClO}_4$ electrolyte and (b) calculated mass activities at 0.75 V (vs. RHE)

	NGr	NGr-H	NGr-H _M	NGr-H _{MD}	NGr-H _{MD} LH _{MD}
Onset potential (V, vs. RHE)	0.58	0.77	0.86	0.89	0.89
Mass activity (mA/mg) at 0.75 V (vs. RHE)	0	0.02	0.22	0.99	1.28

Performance of the prepared catalysts (3) – ORR pathway

- ✓ Confirmed by RRDE measurement
- ✓ Near 4-electron transfer at 0.4V (vs. RHE)

Performance of the prepared catalysts (4) – Stability

✓ i-t chronoamperometry at 0.6V (vs. RHE) for 10h
✓ Outperformed stability compared with Pt/C

Acid leaching (1) - Linear Sweep Voltammetry Results

✓ Performance decreased after acid leaching

Acid leaching (2) - XPS-N_{1s} Results

2853-2858

KAIS

Restacking of the graphene layers (1) – correlated factors

- ✓ Concentration of the pyridinic-N vs. Mass activity
- ✓ No clear correlation \Rightarrow Not an important factor

Restacking of the graphene layers (2) – correlated factors

- $\checkmark\,$ Proportion of the pyridinic-N vs. Mass activity
- \checkmark One factor of the ORR performance
- \checkmark Not very clear

Restacking of the graphene layers (3) – correlated factors

- ✓ **Number of graphene layers** vs. Mass activity
- \checkmark Crucial factor of the ORR performance
- ✓ Number of layers increased \Rightarrow Performance increased

Sheet resistance of the prepared catalysts

RSC Advances 3 (2013) 4246-4253

