

PEM fuel cell activities at KBM

Eivind M. Skou

Department of Chemical Engineering, Biotechnology and Environmental Technology

University of Southern Denmark

Syddansk Universitet

Faculty of Engineering at University of Southern Denmark

University of Southern Denmark

Established 1966

Turnover: 351 mill. EUR

5 faculties:

- Engineering
- Science
- Health Sciences
- Humanities
- Business and Social Sciences

6 campuses

Academic staff: 1.973

Technical and adm. staff: 14

Students, total no : 26.000

International students: 4100

Number of programmes: 222 of which 81 is in English

Leiden World Ranking: 192

Students per 1. Oct. 2012

From	Number	Percent
Denmark	21,930	84%
Other Nordic countries	661	2.5%
Other European countries (EU/EØS)	2,475	9.5%
Outside EU/EØS	968	4%
I alt	26,034	100%

Organisation

Faculty Management

Dean Per Michael Johansen Director of Studies Henning Andersen Head of Secretariat Søren Lind Christiansen

Department of Innovation and Technology

Nano-optics, Structural dynamics, Energy Technology, Production, Robot Mechanics, Supply Chain Management, Product Development & Innovation, Design.

> Head of Department Per Michael Johansen (ad

The Maersk Mc-Kinney Moller Institute

Robot and Software Technology, Biological inspired robot technology, Cognitive vision, Mathematic Modelling, Embedded Systems, Power Electronics, Robot and IT technology for industry, agriculture, healthcare and welfare.

> Head of Department Lars Dyhr

Department of Chemical Engineering, Biotechnology and Environmental Technology

 Analytical Chemistry, Spectroscopy, Natural Products Chemistry, Purification, Medicaments, Food Quality, Biogas,
Biodiesel, Bacteria, Microalgae, Recombinant Proteins, Environment, Greenhouse Gases, Waste Management, Life Cycle Analysis, Advanced Materials Chemistry, Chemical Separation Techniques, Process Design.

> Head of Department Lars Porskjær Christensen

The Mads Clausen

Institute (Sønderborg)

Mechatronics, Control, Power Electronics, New Energy Sources, Energy Efficiency, Modeling, Nano- Micro- og Cleanroom Technology, New light Sources, Microfluidics, User-Oriented Design, Innovation & Business.

> Head of Department Horst-Günter Rubahn

TEK THREE

Strategic focus areas – up to 2017

The new faculty

www.sdu.dk/tek

Fuel cell activities

New substrates – catalysts

Nanocarbon tubes and fibers SiC NbC-N Substrate effects

Interactions at interfaces

Anion adsorption lonomer adsorption

Thermal stability

Thermogravimetry

Durability

Catalyst substrates (CNF and CNT)

S.M. Andersen, M. Borghei, P. Lund. E. Yli-Rantala, A. Pasanen, E. Kauppinen, V. Ruiz, P. Kauranen and E.M. Skou: Solid State Ionics 231 (2013) 94

Catalyst substrates (CNF and CNT)

S.M. Andersen, M. Borghei, P. Lund. E. Yli-Rantala, A. Pasanen, E. Kauppinen, V. Ruiz, P. Kauranen and E.M. Skou: Solid State Ionics 231 (2013) 94

Catalyst substrates (SiC)

Synthesis of SiC-nanowhiskers

The synthesis of SiC-nanowhiskers is believed to rely on a carbothermal reduction of silica which produces SiC-clusters covered in carbon which makes them hydrophobic. *

 $SiO_2(s)\,+\,C(s)\rightarrow\,SiO(g)\,+\,CO(g)$

 $SiO(g)\,+\,2C(s)\rightarrow SiC(s)\,+\,CO(g)$

A gas-gas reaction then follows on the surface of these clusters to produce hydrophilic SiC-nanowhiskers.

 $SiO(g) + 3CO(g) \rightarrow SiC(nanowhiskers) + 2CO_2(g)$

Figure 2: Diagram of synthesis and separation process.

*Ref: Rajnish Dhiman, Erik Johnson, Per Morgen, Ceramics International, 37 (2011) 3759-3764

Catalyst substrates (SiC)

R. Dhiman, E. Johnson, E. M. Skou, P. Morgen, S. M. Andersen: J. Mat. Chem. A. 19 (2013) 6030-6036

Catalyst substrates (SiC)

R. Dhiman, E. Johnson, E. M. Skou, P. Morgen, S. M. Andersen: J. Mat. Chem. A. 19 (2013) 6030-6036

SiC fiber reinforcement of CsH₂PO₄

Figure 3: a) As-made mix of carbon-covered clusters and whiskers. b) Extraction with toluene. The carbonaceous phase is the top layer. c) Extraction with chloroform. The carbonaceous phase is the bottom layer. d) Final product in water after several extractions.

Catalyst substrates (NbC-N)

Figure 3. SEM images of Pt/NbC_xN_{1-x} at low magnifications a) and b) and high magnifications at c) and d)

S.N. Stamatin and E.M. Skou: ECS Transactions 58 (2013) 1267

Catalyst substrates (NbC-N)

Figure 3. SEM images of $Pt/NbC_xN_{1\text{-}x}$ at low magnifications a) and b) and high magnifications at c) and d)

Figure 6 CV curves for Pt/NbC_xN_{1-x} (light gray) and BASF (black) in Ar saturated 0.5 M HClO4 at 0.05 V s^{-1}

S.N. Stamatin and E.M. Skou: ECS Transactions 58 (2013) 1267

Catalyst substrates (NbC-N)

Figure 6 CV curves for Pt/NbC_xN_{1-x} (light gray) and BASF (black) in Ar saturated 0.5 M HClO4 at 0.05 V s^{-1}

S.N. Stamatin and E.M. Skou: ECS Transactions 58 (2013) 1267

Figure 9 Relative ESA vs. number of potential cycle for BASF (black) and $NbC_xN_{1\cdot x}$ (light gray)

Substrate effects

Substrate effects

Rajnish Dhiman, Serban N. Stamatin, Shuang M. Andersen, Per Morgen and Eivind M. Skou: J. Mat. Chem. , submitted

Interactions – anion adsorption

ESA·of·platinum·as·a·function·of·phosphoric·acid·concentration.·The·fraction·of·free·platinum·surface·is·shown·on·the· second·Y-axis.¶

Daniel Risskov Sørensen: Internal report

Interactions – ionomer adsorption

(D): 19F–NMR.

Syddansk Universitet

Adsorption isotherms on carbon or catalyst.

Shuang Ma, Qian Chen, Flemming H. Jørgensen, Paul C. Stein and Eivind M. Skou: Solid State Ionics 178 (2007) 1568

Ionomer adsorption

There is a strong interaction between the membrane binder in the electrode and the catalyst

Durability

Casper Frydendahl: Internal report

Group members

Eivind Skou, professor Terence Warner, ass. professor Shuang Ma Andersen, ass. professor Ulla Gro Nielsen ass. professor FKF Per Morgen, ass. professor emer. FKF Casper Nørgaard, post. doc. Rajnish Dhiman, post. doc. Daniel Risskov Sørensen. ph.d. student Serban Stamatin, ph.d. student Steffen Thrane Vindt, ph.d. student

Thank You